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1. INTRODUCTION

Between February and May of 1999, the Advanced Deployable System (ADS)
program deployed a total of 18 arrays off the southern California coast as part of the
U.S. Navy's Multi-Node Test (MNT) and Fleet Evaluation Test (FET) exercises. Data
from these arrays arrived via underwater cable at a shore processing site, where the data

were beamformed and displayed for detection analysis.

Such analysis requires that the beamformer and postbeamforming processors be
provided with array configuration information, including the relative positions of each
receiver element within the array and the overall orientation of the array. Historical
evidence indicates that deployment of a linear array, fully elongated and properly
positioned, is the exception rather than the norm in array deployment. Accurate
estimation of array configuration and orientation is necessary to ensure optimal

performance of both the individual nodes and the field as a whole.

To ensure this level of performance, methods and tools have been developed by
the ADS program to perform array element localization (AEL). The correlation-based
AEL algorithm implemented at FET/MNT evolved from methods developed over several
years at ARL:UT, where they were used for analysis of many diverse data sets collected
by several different programs. These methods were implemented and refined within the
ADS processing and automation system (PAS), primarily within the analysis processor

(AP).




During FET (henceforth used to include both the FET and MNT exercises), data
were collected for AEL analysis. This included data collected during events involving
USN ships RV7 and RV1 in motion near each node (overt method) and data collected
during events of opportunity (covert method). These data were analyzed, primarily on-
site in quasi-real time, but also post-test. This report summarizes the results of these

analyses.

In Section 2, an overview of the AEL process is presented, with implementation
details discussed in Section 3. Results from all events are then shown in Section 4, with
observations, accuracy estimates, lessons learned, and conclusions covered in Section 5.
Appendices list the best available element positions for each array, as well as showing the

omnidirectional (omnixomni) correlagrams and geometries used during analysis.



2. CORRELATION APPROACH TO AEL

The basis of the correlation approach to array element localization is the
measurement of the timings of a set of signals at the different receiver elements. These
timings are modeled using assumed positions for the receiver elements. The assumed
element positions are iteratively adjusted to minimize the mean square error between the
measured and modeled timings, using a Hessian-based nonlinear optimization routine.

Detailed discussion of this process follows.

2.1 TIME DELAY MEASUREMENTS FROM OMNIXOMNI
CORRELAGRAMS

Traditionally, timing measurements used for AEL analysis were obtained from
impulsive events (explosive charges or lightbulb implosions), or from matched filtering
of modulated waveforms such as hyperbolic frequency modulations (HFMs). Because of
the necessity for covert operation of the ADS system, as well as for the ease of
conducting exercises without any need for source employment, an approach was
developed to obtain the necessary timing measurements directly from the radiated noise

of surface ships.

In this approach, illustrated in Fig. 2.1, an omnixXomni correlagram is formed
between a particular pair of receiver elements. During the transit of an acoustic source, a
trace will be observed on the correlagram. The trace is caused by the broadband energy
naturally radiated by the ship, and will change in bearing as the source transits. The time
delay measured from the correlagram represents the difference in travel time from the
source to each receiver of the pair. The absolute travel time is not required in AEL

analysis.
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Between 10 and 30 specific times are selected during the transit of the source; ai
these points travel time difference is measured. In addition, measurements are obtained
for up to 3N omnixomni correlagrams, where N is the number of receivers in the array.
In this manner, a highly redundant set of time delay measurements is obtained, saved in

an array of dimension [(number of source points) by (number of omnidirectional pairs)].

Obtaining this set of measured time delays is one of the more difficult steps in the
AEL process, both in terms of expenditure of analyst time and in terms of complexity of
automation. A partially automated program has been developed to obtain time delay
measurements from a series of correlagrams, but the program currently requires analyst
supervision, both to correctly identify the trace of interest, and to ensure that the tracker
does not jump to an adjacent trace. Figure 2.2 shows an example omniXomni
correlagram from FET, with the desired trace outlined in red. Other traces, some very
close in bearing, offer ample opportunities for introduction of errors by an unsupervised

tracking program.

2.2 MODELING OF TIME DELAYS AND ADJUSTMENT
OF ELEMENT POSITIONS

The next step in the array element localization process is to model the array of
time delays based on assumed positions for the source and receivers. Using methods
discussed in Section 2.3, these source and receiver positions are initialized, and then

travel time differences are computed, based on this model.

Next comes computation of the RMS error between these modeled travel time

differences and those measured from the omnixXomni correlagrams. An iterative
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nonlinear optimization algorithm is employed to adjust unknown parameters until the
root mean square (RMS) error is minimized. In this case, the unknown parameters are
the x-y positions of each receiver element (assumed to have constant depth), and
parameters describing the source positions or track. This algorithm iterates until the
RMS error decreases to less than a preset tolerance, at which point the algorithm is

considered to have converged.

Two nonlinear optimization methods have been employed. The first is the inverse
Hessian method, in which it is assumed that the error surface is quadratic with respect to
the unknown parameters, and the update to the unknown parameters is based on a local
estimate to this quadratic surface. This assumption is generally good when unknown
parameters are close to their optimal values. In terms of the AEL problem, this
assumption is good when the error has a simple dependence on the unknown parameters,
and when the initialized system (sources and receivers) is reasonably near the solution.
This is the case when the source positions are described in terms of x-y locations or
bearings, and when these x-y positions are accurately initialized using GPS

measurements.

For a more complicated source track description, such as the 4-parameter
approach discussed in Section 2.3, the error surface is no longer quadratic with respect to
the source parameters, and so the Hessian-based method cannot be reliably used. In such
a case, a steepest descent algorithm is employed, the update to the unknown parameters
being based on the local gradient of the RMS error. This algorithm can navigate through

a more complex error surface in search of the optimal solution.




Although the steepest descent algorithm is more robust against complexities in the
error surface and against poor initialization, the inverse Hessian method is much faster,
and so is used where possible. The inverse Hessian method generally requires

10-25 iterations to converge, while the steepest descent method requires at least 50.

2.3  ADS AEL ALGORITHM VARIANTS

This section describes details of the source track description, the relationship
between the source/receiver positions and the time delays, and the means of initializing
the unknown parameters. The algorithms presented here can be organized as shown in
Fig. 2.3, according to the availability of accurate initialization and the distance from the

receivers to the source.

The availability of accurate initialization of unknown parameters depends on
whether dedicated assets that can provide accurate navigational information are available
for AEL runs, or whether analysis will be based on sources of opportunity, such as
passing merchant shipping. When navigational information is available, source positions
can be accurately initialized directly from the GPS data. In these cases, GPS data are also
generally available for the deployment platform, allowing for an accurate estimate of the

receiver array's absolute position and line of bearing.

When accurate navigational information is not available, parameters describing
the source track must be initialized via grid search methods, obtaining an initialization

that minimizes the RMS difference between the measured and the predicted time delays.
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The second trait distinguishing AEL algorithm variants from one another is the
distance from the receiver array to the acoustic source being used for AEL. One option is
to have sources in the near field, meaning that propagation from source to receiver is via
direct path. This lack of bottom interactions means that the refracted ray paths can be

accurately modeled even when no information regarding bottom structure is available.

Generally, detailed bottom information is not available in the early phases of a
deployment, which is when AEL must be performed. For sources in direct path range,
propagation path information (including travel time) can be obtained using only the
sound speed or velocity profile (SVP) in the water, which is generally available. In this
case, a ray trace program is used to obtain the relationship between source-receiver
separation and travel time, and this information can then be used to compute modeled

travel time differences based on the current estimates of the source and receiver positions.

AEL analysis can also be based on far-field sources. There is no clear boundary
between far-field and mid-field sources, only a gradually diminishing error resulting from
substituting one for the other. Simply, a far-field source is one for which the wavefront of
the arriving signal can be treated as a plane wave. For a source that is 15 km distant, the
actual wavefront will deviate from planar by about 2 m across a S00-m aperture. A
deviation of 1 m would require a contact about 30 km away. The far-field AEL algorithm
would represent this wavefront as planar, and so induce a comparable bow in the receiver
shape, as illustrated in Fig. 2.4. Treating a wavefront as planar greatly simplifies the
algorithm, resulting in improved robustness and speed, but it remains important to estimate

the range to the source and, if necessary, correct the overall array curvature.

10



As shown in Fig. 2.3, these two sets of options allow for four algorithm choices,
one of which (far field with navigation) has been left unimplemented because of
irrelevance. The other three options have been implemented within the ADS AEL software

suite.

The first AEL variant is a near-field source with known navigation. This is a
variant that traditionally has shown excellent robustness and accuracy, having been used
successfully on dozens of data sets, both by ADS and other programs. This algorithm
requires a reasonably accurate estimate of the sound speed profile and the water depth.
Like all Variaﬁts discussed here, it is currently implemented to treat all receiver elements as
being in the same horizontal plane, although this variant can be expanded to treat the

receiver element depths as unknowns.

The second AEL variant is a far-field source with unknown navigation. This
algorithm was developed specifically for the ADS .program in response to the need for
covert AEL. Each source position is fully defined by its bearing, which is initialized by a
simple grid search. This algorithm has proven robust, accurate, and fast, with the primary
source of error being the incorrect identification of a mid-field source as being in the far
field. The most effective way to rectify incorrect mid-field identification appears to be by
using a field processor, which would make use of multi-node holding of contacts to identify

the sources of opportunity and to estimate their ranges.

The third AEL variant is a near-field source with unknown navigation.

Development of this algorithm was motivated not only by the need for covert AEL but

11
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also by the difficulty of identifying true far-field contacts, as well as the possible lack of

high signal-to-noise ratio (SNR) far-field contacts in highly cluttered environments.
Near-field sources of opportunity are available in abundance in most environments;
therefore SNR is not an issue. The difficulty of this method is that too little information
is available to guarantee algorithm convergence in a general case. To limit the degrees of
freedom of the system, it is assumed that the source of opportunity has passed the array
on a constant-speed straight-line course. Thus, the source track can be defined by four
parameters, in this case being the time of closest point of approach (CPA), the bearing to
the CPA point, the CPA range, and the speed. With these four parameters as unknowns,
along with the x-y location of each receiver element, a sqlution can usually be obtained.
This algorithm has not proven to be as robust and reliable as the other two, mainly due to
the difficulty of obtaining an accurate enough initialization of the source track, and so it

should still be considered to be in a developmental stage.

The distinction between having navigation available and not available can
generally be compared to the difference between overt and covert AEL. Overt AEL is
done in a way that could compromise the location of the nodes, such as driving a back-
and-forth pattern around each node with a surface ship, as was done in FET. Covert AEL
indicates the intent to derive array configurations without‘doing anything that would give
away the locations of the nodes, as was demonstrated at FET using the far-field no-
navigation algorithm. There are exceptions to this, such as using radar to obtain
navigational information on near-field sources of opportunity, or having a dedicated
surface asset transit through the field in a fairly linear manner but along a path that brings

it past some or all of the nodes in the field.
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24  QUALITY ASSESSMENT OF ALGORITHM RESULTS

As the AEL process proceeds, various diagnostic displays are provided to allow

for an assessment of the validity of the solution obtained. Some of these are listed below.

» As the linetracker runs, it displays a sequence of omnixXomni
correlagrams, with the derived time-7 relationship superimposed. This
relationship shows if the linetracker has skipped traces, or if the trace
of interest has faded out.

« Scoring of the time-T points is shown, which allows thresholding to be
applied to remove low quality data.

« As AEL iterates, the current estimates of the source and receiver
positions are displayed. For the near-field navigation method, the
distortion of the source track should be minimal, as shown in Fig. 2.5.
Significant distortion of the source track, as for example in Fig. 2.6,
indicates systematic errors such as depth variation of the receiver array
or poor initialization of sources or receivers. Appendix B contains
displays for all events of the source track upon convergence.

« Upon algorithm convergence, the distances between adjacent receiver
elements are compared to the planned separations. Since the length of
cable between elements limits their true separation, significant over-
nominal separation is generally an indication of problems such as

incorrect linetracking, or an incorrect environmental description.
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+ Upon algorithm convergence, the RMS error between the modeled and
the measured time delays is computed. A high RMS error indicates
either premature convergence of the algorithm or noisy but otherwise .

correct data.

2.5 ARRAY APERTURE ESTIMATION USING
SOURCES OF OPPORTUNITY

The low tension deployment of the FET arrays often resulted in arrays being
relatively straight but with their apertures compressed. When these arrays were
beamformed with a nominal (full aperture) array description, the apparent "endfire"
beams were actually oversteered, resulting in reduced sensitivity of those beams. This
caused white space to appear at the edges of the correlagrams, and similarly degraded the

narrowband "endfire" beams.

Because full AEL solutions for all nodes were weeks away (due mainly to RV7's
busy schedule), a means was needed to quickly obtain accurate estimates of the array
aperture. To meet this need, the following tool was developed on-site. A series of
omnixomni correlagrams was collected (see Fig. 2.7). These correlagrams were already
being computed for use by AEL. Specific omnidirectional pairs were chosen in such a
way that, using four correlagrams, the arrival time at hydrophone 1 could be related to
that at hydrophone 40 (of the 40 LF hydrophones) for use in estimating the entire
apefture. In the example in Fig. 2.7, the omnidirectional pairs are 113, 13x21, 21x31,

and 31x40.
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The maximum time delay (maximum in absolute value) of acoustic sources was
measured on each correlagram. It was assumed that some source of opportunity would
cross endfire in the 3 h of data buffered on disk at any one time. The total travel time
from hydrophone 1 to hydrophone 40 could then be obtained as the sum of the four travel
times extracted from these omniXomni correlagrams. The sound speed could then be

used to convert this travel time to an aperture estimate.

This process could then be repeated, in case no source of opportunity had actually
reached endfire during the 3-h period. In fact, because the entire procedure was so fast
and easy, it was repeated several times during the test, generally returning very consistent .

results.
This method proved to be very accurate, providing an even better estimate of the

array aperture than the overt AEL method. It was also fast, calculating aperture estimates

for all 16 nodes in a few hours.
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3. IMPLEMENTATION IN PAS

The AEL algorithms and related software were implemented in MATLAB and C,
primarily on the analysis processor (AP). MATLAB proved a very useful environment
because it allowed for easy code modifications, provided convenient graphics tools, and
offered easy adaptation to new analysis tasks. The general AP configuration and data

flow are summarized in Fig. 3.1.

The generic multiprocessor (GMP) beamformer produced omnixomni
correlagrams, over the band from 10 to 150 Hz, for a set of omnidirectional pairs selected
at the site (to account for dead hydrophones, etc.). These omnixomni correlagrams were
made available in shared memory, and were collected by a disk buffer manager resident

on the AP, and stored in a 3-h buffer on disk.

A MATLAB program, with a display similar to that in Fig. 2.7, imaged the data in
the buffer. When data useful for AEL were observed on a particular node, the buffered

data for that node were "grabbed" into a permanent disk file for later analysis.

The remaining steps in the AEL process, including the linetracker, were
implemented in MATLAB and C, and resided exclusively on the AP. When the AEL
algorithm converged to a solution, and that solution was judged acceptable for use in the
remainder of PAS (processing automation system), a configuration file was generated and

copied to the appropriate beamformer.
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4. AEL RESULTS FOR FET AND MNT

The AEL results for all FET and MNT nodes are summarized in Figs. 4.1 to 4.5.
In these figures, the dark blue and cyan (light blue) symbols indicate solutions obtained
with the overt near-field AEL method, using RV7 or RV1. The red symbols show results
from the far-field AEL algorithm, which used distant sources of opportunity. Green
symbols show results from the element calibration (ELCAL) analysis, which was a
completely independent array shape analysis conducted for a few FET/MNT arrays by
George Shepard at BBN Systems and Technologies. Brown symbols designate results

from the near-field covert method, which is still under development.

For all methods, the following convention is used to report element positions.
The x and y axes are in the horizontal plane, with the origin of coordinates at either
hydrophone 1 or at the lowest numbered normally functioning LF hydrophone. The x-
axis passes through either hydrophone 40 or the highest numbered normally functioning
LF hydrophone. The x-y-z axes form a right-hand coordinate system, with the z-axis
pointing into the ocean floor. So that this document may be unclassified, the x and y
receiver coordinates are normalized by the constant factor fmin. The value of fmin (or

equivalently, the planned array aperture) may be requested from PMS 407, SPAWAR.

All AEL results make use of the aperture estimates collected from sources of
opportunity, as discussed in Section 2.5. As mentioned there, this method provided the
most reliable method of estimating the array aperture, and all results obtained from other

methods were scaled accordingly.
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In general, the agreement between the different AEL methods is quite close. In
particular, where ELCAL results are available, they generally agreed very well with the
corresponding AEL results. There was sometimes disagreement between the far-field
(covert) and the near-field (overt) AEL results, generally as a result of mistaking a mid-
field source of opportunity for one in the far field. Performance for the near-field covert

algorithm was less satisfactory, indicating the need for further developmental work.

Figure 4.6 represents tabulated array apertures and deviation from linear for all
nodes, along with a note indicating what array configuration was used in the PAS
beamformer. In all but three cases the array was sufficiently straight, taking into
account such factors as the angle between the two subarrays, to use a linear array
description in PAS, thereby eliminating the problem of dealing with front and back
beam sets. In the three cases where the arrays were not straight enough, the full AEL

solution was used in the beamforming.

The lines of bearing (LOBs) collected in Fig. 4.6 note the position of hydrophone
40 relative to hydrophone 1. This number is referred to as the direction of lay (DOL) in
the GMP beamformer. DOL is measured in units of degrees east of north. For the most
part, the absolute position (latitude-longitude) of hydrophone 1 was not obtained from

AEL, but was rather an input to the AEL process.

In Appendix A, the best estimate of x-y hydrophone positions is tabulated for each

array, using the convention discussed in Section 2.5.
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In Appendix B, various displays are shown for each of the overt near-field AEL
events. These displays are useful for determining the trustworthiness of the results for
each case. Examples of the omnixomni correlagrams are shown, which demonstrate the
bearing extent achieved by the source (more is better) and the SNR (more is better). It
appeared that RV1 was a much quieter ship than RV7, to the extent that RV1 was nearly

too quiet for use as an AEL source. RV1 was used for the AEL runs at nodes 23, 41,

and 42.

Other displays in Appendix B include run geometry, both from the navigation
(top) and upon algorithm convergence (bottom). Results suggest that good agreement
between the initial and the converged geometry is the strongest indicator of a correct

solution.
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S. DISCUSSION OF AEL RESULTS

5.1  COMPARISON OF RESULTS AND ACCURACY ESTIMATES

Excluding the results from the near-field covert method, the different AEL
algorithms generally provided comparable results. One exception to this occurred during
use of the far-field covert method, when a midrange source of opportunity was mistaken
for a far-field contact. It was often difficult to distinguish between these two cases based
solely on the omnixomni correlagram, as the example in Fig. 5.1 illustrates. This source

of error came in to play for the far-field solutions for nodes 31, 32, 44, and perhaps for

MNT 11 as well.

As discussed earlier, the field processor can provide the means to determine the
range to a source of opportunity being considered for far-field AEL. If the source is not
sufficiently distant, it should not be selected for use in AEL. As an alternative to
discarding such a source of opportunity, the data from that source could be processed and
then a correction to the overall array curvature could be applied to the result, based on the

range to the source as obtained from the field processor.

For cases where ELCAL and overt AEL results were both available (nodes 22 and
MNT 12), the agreement was excellent. Both the overall shape and the detailed
'variations matched well. Since agreement between such qualitatively different methods
cannot be coincidental, these two cases provide the best opportunity for estimating the

accuracy of the overt AEL results in general.
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In both of these cases, the maximum deviation between element positions found
by the two methods is about 0.5 m, with a mean deviation of about 0.3 m. This degree of
error corresponds to 10% of a wavelength at 300 to 500 Hz, offering precision adequate

for the ADS application.

These two nodes (22 and MNT 12) represent optimal cases for the AEL
algorithm, where there were no complicating issues (such as bottom slopes), and where
no red flags were present in the operation of the AEL algorithm (such as source track
distortion). Some arrays, such as nodes 23, 31, 33, and 44, showed indications of such

difficulties, and so should be assigned a somewhat higher uncertainty (perhaps 1.0 m).
5.2  AUTOMATION OF THE AEL PROCESS

In general, during FET the performance reliability and accuracy of the AEL array
shape estimation algorithm were excellent. The major obstacle remaining before it is
considered "fleet ready" is its degree of automation. That is, the AEL algorithm
implemented in a production ADS system must be capable of returning array shape
estimates without the focused attention of a scientist. Based on FET experience, the

algorithm is definitely not at that point yet.

One option is to integrate additional automation into the correlation-based process
that was used at FET. The process was hands-on by intent during FET to allow a careful
evaluation of its performance and accuracy. Certainly, additional automation could be

added to the code. For instance, a more automated linetracking algorithm under
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development at ARL:UT has shown reasonable reliability when tested on FET data.
Also, algorithms could be developed to recognize the occurrence of a usable CPA event,
based on bearing rate and SNR. Such an algorithm is in the developmental stage at

ARL:UT.

Already, in addition to operating reliably and accurately, the entire AEL
algorithm iterates to completion without requiring analyst interaction. The role of the
analyst is to examine the algorithm output and assess its quality. However, the primary
quality assessment clues (distortion of source track during iteration, over-nominal
element separations, and RMS error upon convergence) could be quantitatively measured

and acceptability thresholds defined for each.

In this scenario—using these acceptability thresholds as screening criteria—AEL
would be running out-of-sight of the operator, and when a reasonable solution had been
obtained for a particular node, an alert would be logged. It would still be necessary for a
somewhat knowledgeable human operator to inspect the results, which in this case would
be a sample omnixomni correlagram with the trace selected, the quantitative Q/A clues
with thresholds noted, and a before-and-after beam correlagram. Previous solutions
obtained for this node would also be provided for comparison. The operator would then

decide whether to update the beamformer.

In addition to correlation-based AEL, alternative algorithms are also being

considered. Attention has been focused on the correlation-based algorithm described

here because of its accuracy and reliability. However, other array shape estimation
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algorithms have also shown promise, and offer better prospects for automation. For
example, a signal-gain-based algorithm has been examined at ARL:UT, and has shown
good performance on simulated data. Additional research on this and other alternative
approaches may produce an algorithm that offers acceptable accuracy with a higher

degree of automation than correlation-based AEL can provide.

Finally, the array aperture estimation method that uses sources of opportunity
could probably be automated fairly easily to quickly provide good aperture estimates with
minimal operator interaction. This algorithm can be viewed as the first step in the overall
AEL process, and could possibly be expanded to compute all of the receiver x-positions
(positions parallel to the array axis). Knowing the x-positions would make it easier to

obtain the y-positions (perpendicular to array axis) using other methods.

5.3 THREE-DIMENSIONAL AEL

It became apparent during FET that mission planning and deployment
considerations prevent placement of all arrays in areas where the bottom is flat. This is a
significant factor in the evaluation of the AEL algorithm, since for a few arrays, the
known depth variation over the aperture of the array accounted for some discrepancies

observed in the AEL results.
This finding has motivated discussion of restructuring AEL to solve for the depth

of each receiver, rather than assuming that all array elements are at the same depth.

Earlier versions of the correlation-based AEL algorithm have solved for the depth of each
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receiver, but for reasons of speed and robustness, a two-dimensional approach was
implemented in PAS during FET. Certainly, it is possible to implement a full three-
dimensional algorithm for ADS, but at the cost of some complexity and computational

load, as well as possible reductions in the robustness of the solution.

A simpler alternative would be to add an AEL input for the depth profile collected
from the towed deployment vehicle (TDV). Comparison of the depth profile obtained
from the ELCAL analysis to that from the TDV showed good agreement, indicating that
the TDV depth information provided a reasonably accurate estimate. With this as an
input to AEL, a solution for the x and y components of the receiver positions would be

straightforward, and the errors associated with ignoring the depth variations would be

avoided.

38



APPENDIX A

Results — Best Estimates of
x-y Hydrophone Positions
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BEST ESTIMATES OF
x-y HYDROPHONE POSITIONS

Element positions will be tabulated for each array deployed during FET. These
results are the "best" approximation, generally based on the near-field overt AEL analysis
using RV1 and RV7, although the ELCAL results are used for node MNT 11, and the

near-field covert results are used for node 23.

The following convention is used to report element positions. The x and y axes
are in the horizontal plane, with the origin of coordinates at either hydrophone 1 or at the
lowest numbered non-dead LF hydrophone. The x-axis passes through either hydrophone
40 or the highest numbered non-dead LF hydrophone. The x-y-z axes form a right-hand

coordinate system, with the z-axis pointing into the ocean floor.
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Node MNT 11

Hydrophone Number Planned Positions | Best Solution (ELCAL)
1-40 1-48 1-52 x(m/fmin) x(m/fmin) y(m/fmin)

1 1 1 0.00 x(m) y(m)
2 2 2 1.67 0.00 0.00
3 7 7 3.40 --NOT LOCALIZED--
4 11 15 5.28 --NOT LOCALIZED--
5 13 17 7.19 —NOT LOCALIZED--
6 14 18 9.22 6.80 -0.01
7 15 19 11.36 8.75 -0.06
8 16 20 13.60 10.88 -0.13
9 17 21 15.96 13.02 0.17
10 18 2 18.44 15.35 -0.19
11 19 23 21.04 17.82 -0.17
12 20 24 23.77 —-DEAD--

13 21 25 26.65 22.89 -0.22
14 22 26 29.67 25.76 -0.27
15 23 27 32.84 28.73 -0.25
16 24 28 36.17 31.87 -0.25
17 25 29 39.67 35.15 -0.21
18 26 30 4335 38.63 -0.23
19 27 31 47.22 42.25 -0.19
20 28 32 51.29 46.09 -0.23
21 29 33 55.56 50.16 -0.16
22 30 34 57.22 54.37 -0.17
23 31 35 58.97 56.03 -0.13
24 32 36 60.81 57.74 -0.08
25 33 37 62.75 59.57 -0.11
26 34 38 64.78 61.49 -0.07
27 35 39 66.91 63.47 -0.05
28 36 40 69.16 65.56 -0.08
29 37 41 71.52 67.76 -0.08
30 38 42 73.99 70.07 -0.08
31 39 43 76.59 72.42 -0.03
32 40 44 79.33 74.93 -0.04
33 41 45 82.20 77.57 006
34 42 46 85.22 80.36 -0.08
35 43 47 88.39 83.29 -0.12
36 44 48 91.73 86.43 -0.07
37 45 49 95.23 —DEAD-- _
38 46 50 98.91 93.16 -0.03
39 47 51 102.78 96.75 -0.04
40 48 52 106.84 100.49 0.01
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Node MNT 12

Hydrophone Number | Planned Positions Best Solution
1-40 1-48 1-52 x(m/fmin) x(m/fmin) | y(m/fmin)

1 1 1 0.00 --DEAD--

2 2 2 1.67 0.00 0.00
3 7 7 3.40 1.59 -0.11
4 11 15 5.28 3.27 -0.10
5 13 17 7.19 5.01 -0.02
6 14 18 9.22 6.90 0.01
7 15 19 11.36 8.88 0.09
8 16 20 13.60 11.07 0.06
9 17 21 15.96 13.26 0.12
10 18 22 18.44 15.63 0.10
11 19 23 21.04 18.08 0.20
12 20 24 23.77 20.72 0.23
13 21 25 26.65 23.39 0.32
14 22 26 29.67 26.26 0.39
15 23 27 32.84 29.29 0.42
16 24 28 36.17 32.46 0.51
17 25 29 39.67 --DEAD--

18 26 30 43.35 39.30 0.53
19 27 31 47.22 43.01 0.56
20 28 32 51.29 46.83 0.48
21 29 33 55.56 50.95 0.48
22 30 34 57.22 52.50 0.51
23 31 35 58.97 54.14 0.56
24 32 36 60.81 55.86 0.53
25 33 37 62.75 57.63 0.60
26 34 38 64.78 59.47 0.56
27 35 39 66.91 61.49 0.65
28 36 40 69.16 63.58 0.75
29 37 4] 71.52 65.80 0.78
30 38 42 73.99 68.07 0.73
31 39 43 76.59 70.42 0.74
32 40 44 79.33 72.95 0.73
33 41 45 82.20 75.64 0.61
34 42 46 85.22 78.39 0.56
35 43 47 88.39 81.20 0.57
36 44 48 91.73 84.36 0.42
37 45 49 95.23 87.56 0.28
38 46 50 98.91 91.03 0.15
39 47 51 102.78 94,68 0.10
40 48 52 106.84 98.53 0.00
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Node 11

Hydrophone Number | Planned Positions Best Solution
1-40 1-48 1-52 x(m/fmin) x(m/fmin) | y(m/fmin)

1 1 1 0.00 0.00 0.00
2 2 2 1.67 1.61 -0.12
3 7 7 3.40 3.25 -0.12
4 11 15 5.28 --DEAD--

5 13 17 7.19 6.81 0.04
6 14 18 9.22 --DEAD--

7 15 19 11.36 --DEAD--

8 16 20 13.60 13.11 0.14
9 17 21 15.96 15.44 0.12
10 18 22 18.44 17.88 0.13
11 19 23 21.04 20.37 0.08
12 20 24 23.77 23.09 0.00
13 21 25 26.65 25.94 -0.01
14 22 26 29.67 28.86 0.04
15 23 27 32.84 32.03 0.09
16 24 28 36.17 35.32 0.10
17 25 29 39.67 38.79 0.13
18 26 30 43.35 42.44 0.10
19 27 31 4722 46.27 0.06
20 28 32 51.29 50.29 0.03
21 29 33 55.56 54.54 0.07
22 30 34 57.22 56.15 0.09
23 31 35 58.97 57.91 0.07
24 32 36 60.81 59.75 0.05
25 33 37 62.75 61.67 0.04
26 34 38 64.78 63.64 0.05
27 35 39 66.91 65.74 0.08
28 36 40 69.16 67.91 0.10
29 37 41 71.52 70.24 0.12
30 38 42 73.99 72.69 0.09
31 39 43 76.59 75.21 0.09
32 40 44 79.33 77.88 0.11
33 41 45 82.20 80.76 0.09
34 42 46 85.22 83.74 0.08
35 43 47 88.39 86.85 0.10
36 44 48 91.73 90.20 0.10
37 45 49 95.23 93.73 0.06
38 46 50 98.91 97.33 0.00
39 47 51 102.78 101.14 -0.02
40 48 52 106.84 104.77 0.00
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Node 12

Hydrophone Number | Planned Positions Best Solution
1-40 1-48 1-52 x(m/fmin) x(m/fmin) y(m/fmin)

1 1 1 0.00 0.00 0.00
2 2 2 1.67 1.60 -0.06
3 7 7 3.40 3.18 -0.10
4 11 15 5.28 4.82 -0.02
5 13 17 7.19 --DEAD--

6 14 18 9.22 --DEAD--

7 15 19 11.36 10.58 0.25
8 16 20 13.60 12.74 0.29
9 17 21 15.96 15.11 0.33
10 18 22 18.44 17.61 0.31
11 19 23 21.04 --DEAD--

12 20 24 23.77 22.66 0.30
13 21 25 26.65 25.47 0.29
14 22 26 29.67 28.51 0.22
15 23 27 32.84 31.61 0.19
16 24 28 36.17 34.87 0.21
17 25 29 39.67 38.37 0.17
18 26 30 43.35 42.06 0.17
19 27 31 47.22 45.92 0.15
20 28 32 51.29 50.00 0.13
21 29 33 55.56 54.31 0.12
22 30 34 57.22 55.91 0.07
23 31 35 58.97 57.71 0.00
24 32 36 60.81 59.54 -0.02
25 33 37 62.75 61.46 -0.01
26 34 38 64.78 63.51 0.00
27 35 39 66.91 65.63 0.02
28 36 40 69.16 67.85 -0.02
29 37 41 71.52 --DEAD--

30 38 42 73.99 72.60 -0.05
31 39 43 76.59 75.29 0.00
32 40 44 79.33 77.96 -0.01
33 41 45 82.20 80.91 -0.03
34 42 46 85.22 83.95 -0.09
35 43 47 88.39 87.27 -0.09
36 44 48 91.73 90.58 -0.07
37 45 49 95.23 94.10 -0.08
38 46 50 98.91 97.91 -0.03
39 47 51 102.78 --DEAD--

40 48 52 106.84 105.95 0.00

46




Node 13

Hydrophone Number| Planned Positions Best Solution
1-40 | 1-48 | 1-52 x(m/fmin) x(m/fmin) | y(m/fmin)

1 1 1 0.00 0.00 0.00
2 2 2 1.67 1.61 0.10
3 7 7 3.40 3.12 0.01
4 11 15 5.28 4.72 -0.15
5 13 17 7.19 6.31 0.25
6 14 18 9.22 8.12 0.21
7 15 19 11.36 9.97 0.30
8 16 20 13.60 --DEAD--

9 17 21 15.96 14.13 0.51
10 18 22 18.44 16.39 0.38
11 19 23 21.04 --DEAD--

12 20 24 23.77 21.41 0.35
13 21 25 26.65 24.00 0.07
14 22 26 29.67 --DEAD--

15 23 27 32.84 29.91 0.02
16 24 28 36.17 33.09 0.09
17 25 29 39.67 36.51 0.08
18 26 30 43.35 40.03 0.19
19 27 31 47.22 43.74 0.28
20 28 32 51.29 47.60 0.02
21 29 33 55.56 51.80 0.21
22 30 34 57.22 53.42 0.10
23 31 35 58.97 55.15 0.17
24 32 36 60.81 56.98 0.24
25 33 37 62.75 59.04 0.55
26 34 38 64.78 --DEAD--

27 35 39 66.91 --DEAD--

28 36 40 69.16 64.65 -0.11
29 37 41 71.52 66.82 0.10
30 38 42 73.99 69.03 0.08
31 39 43 76.59 71.29 -0.05
32 40 44 79.33 --NOT LOCALIZED--
33 41 45 82.20 --NOT LOCALIZED--
34 42 46 85.22 78.80 0.05
35 43 47 88.39 81.43 0.13
36 44 48 91.73 84.46 0.18
37 45 49 95.23 87.72 0.02
38 46 50 98.91 91.04 -0.04
39 47 51 | 102.78 94.49 0.16
40 48 52 106.84 98.15 0.00
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Node 14

Hydrophone Number Planned Positions Best Solution
1-40 1-48 1-52 x(m/fmin) x(m/fmin) | y(m/fmin)

1 1 1 0.00 0.00 0.00
2 2 2 1.67 1.56 -0.21
3 7 7 3.40 3.09 -0.23
4 11 15 5.28 4.61 -0.13
5 13 17 7.19 6.19 0.12
6 14 18 9.22 7.99 0.46
7 15 19 11.36 9.86 0.39
8 16 20 13.60 11.92 0.49
9 17 21 15.96 14.08 0.30
10 18 22 18.44 16.35 0.27
11 19 23 21.04 18.68 0.33
12 20 24 23.77 21.26 0.49
13 21 25 26.65 --DEAD--

14 22 26 29.67 26.50 0.97
15 23 27 32.84 29.37 1.07
16 24 28 36.17 32.38 1.22
17 25 29 39.67 35.68 1.26
18 26 30 4335 39.04 1.34
19 27 31 47.22 42.62 1.32
20 28 32 51.29 46.36 1.34
21 29 33 55.56 50.15 1.21
22 30 34 57.22 51.52 1.11
23 31 35 58.97 53.11 1.14
24 32 36 60.81 54.66 1.11
25 33 37 62.75 56.24 1.15
26 34 38 64.78 57.97 1.05
27 35 39 66.91 59.68 1.15
28 36 40 69.16 61.53 1.19
29 37 41 71.52 63.46 1.37
30 38 42 73.99 65.52 1.49
31 39 43 76.59 --DEAD--

32 40 44 79.33 --DEAD--

33 41 45 82.20 72.35 1.08
34 42 46 85.22 74.96 0.97
35 43 47 88.39 77.61 0.81
36 44 48 91.73 80.47 0.64
37 45 49 95.23 83.47 0.38
38 46 50 98.91 86.58 0.21
39 47 51 102.78 89.89 0.13
40 48 52 106.84 93.34 0.00
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Node 21

49

Hydrophone Number | Planned Positions Best Solution
1-40 1-48 1-52 x(m/fmin) x(m/fmin) | y(m/fmin)

1 1 1 0.00 --DEAD--

2 2 2 1.67 0.00 0.00
3 7 7 3.40 1.56 -0.03
4 11 15 5.28 3.39 -0.10
5 13 17 7.19 5.22 -0.13
6 14 18 9.22 7.12 -0.15
7 15 19 11.36 --DEAD--

8 16 20 13.60 11.52 -0.07
9 17 21 15.96 13.83 -0.02
10 18 22 18.44 16.47 0.04
11 19 23 21.04 --DEAD--

12 20 24 23.77 21.72 0.04
13 21 25 26.65 24.50 0.03
14 22 26 29.67 27.58 0.04
15 23 27 32.84 30.70 -0.01
16 24 28 36.17 34,10 -0.03
17 25 29 39.67 37.56 -0.07
18 26 30 43.35 41.34 -0.08
19 27 31 47.22 45.31 -0.17
20 28 32 51.29 49.38 -0.21
21 29 33 55.56 53.71 -0.23
22 30 34 57.22 55.38 -0.19
23 31 35 58.97 57.20 -0.19
24 32 36 60.81 59.17 -0.17
25 33 37 62.75 61.03 -0.14
26 34 38 64.78 62.84 -0.22
27 35 39 66.91 65.08 -0.22
28 36 40 69.16 67.17 -0.17
29 37 41 71.52 69.60 -0.12
30 38 42 73.99 72.06 -0.11
31 39 43 76.59 74.70 -0.08
32 40 44 79.33 77.45 -0.13
33 41 45 82.20 80.37 -0.08
34 42 46 85.22 83.39 0.01
35 43 47 88.39 86.63 0.05
36 44 48 91.73 89.98 0.07
37 45 49 95.23 93.52 0.09
38 46 50 98.91 97.19 0.03
39 47 51 102.78 101.09 0.00
40 48 52 106.84 105.17 0.00




Node 22

Hydrophone Number Planned Positions Best Solution
1-40 1-48 1-52 x(m/fmin) x(m/fmin) y(m/fmin)
1 1 1 0.00 0.00 0.00
2 2 2 1.67 --NOT LOCALIZED--
3 7 7 3.40 --NOT LOCALIZED--
4 11 15 5.28 --NOT LOCALIZE-D-
5 13 17 7.19 6.67 0.00
6 14 18 9.22 8.63 0.00
7 15 19 11.36 10.68 -0.03
8 16 20 13.60 12.83 -0.10
9 17 21 15.96 15.13 -0.11
10 18 22 18.44 17.52 -0.18
11 19 23 21.04 20.02 -0.18
12 20 24 23.77 22.72 -0.21
13 21 25 26.65 25.56 -0.24
14 22 26 29.67 28.51 -0.29
15 23 27 32.84 31.61 -0.31
16 24 28 36.17 34.88 -0.41
17 25 29 39.67 38.38 -0.43
18 26 30 43.35 42.03 -0.49
19 27 31 47.22 45.86 -0.48
20 28 32 51.29 49.94 -0.48
21 29 33 55.56 54.21 -0.49
22 30 34 57.22 55.83 -0.48
23 31 35 58.97 57.63 -0.45
24 32 36 60.81 59.45 -0.42
25 33 37 62.75 61.40 -0.37
26 34 38 64.78 63.44 -0.34
27 35 39 66.91 65.48 -0.32
28 36 40 69.16 67.76 -0.36
29 37 41 71.52 70.07 -0.40
30 38 42 73.99 72.48 -0.45
31 39 43 76.59 --DEAD--
32 40 44 79.33 77.79 -0.51
33 41 45 82.20 80.62 -0.53
34 42 46 85.22 83.62 -0.50
35 43 47 88.39 86.88 -0.48
36 44 48 91.73 90.22 -0.40
37 45 49 95.23 93.72 -0.35
38 46 50 98.91 97.45 -0.24
39 47 51 102.78 101.32 -0.09
40 48 52 106.84 105.41 0.00
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Node 23

Hydrophone Number Planned Positions Best Solution (NF Nonav)
1-40 1-48 1-52 x(m/fmin) x(m/fmin) y(m/fmin)
1 1 1 0.00 0.00 0.00
2 2 2 1.67 1.62 0.10
3 7 7 3.40 322 0.16
4 11 15 5.28 5.00 0.24
5 13 17 7.19 6.80 0.24
6 14 18 9.22 8.74 0.23
7 15 19 11.36 10.82 0.24
8 16 20 13.60 13.05 0.25
9 17 21 15.96 15.40 0.19
10 18 22 18.44 17.84 0.13
11 19 23 21.04 20.41 0.09
12 20 24 23.77 23.23 0.06
13 21 25 26.65 26.10 0.07
14 22 26 29.67 29.11 0.04
15 23 27 32.84 32.32 0.00
16 24 28 36.17 35.64 -0.08
17 25 29 39.67 39.16 -0.05
18 26 30 43.35 42.84 0.06
19 27 31 47.22 46.69 0.19
20 28 32 51.29 50.74 0.39
21 29 33 55.56 55.05 0.66
22 30 34 57.22 56.73 0.76
23 31 35 58.97 58.49 0.86
24 32 36 60.81 60.38 0.96
25 33 37 62.75 62.23 1.07
26 34 38 64.78 64.24 1.16
27 35 39 66.91 66.29 1.09
28 36 40 69.16 68.20 1.28
29 37 41 71.52 70.38 1.23
30 38 42 73.99 72.63 1.32
31 39 43 76.59 74.92 1.40
32 40 44 79.33 77.20 1.32
33 41 45 82.20 79.61 1.35
34 42 46 85.22 81.97 1.52
35 43 47 88.39 84.37 1.42
36 44 48 91.73 87.30 1.28
37 45 49 95.23 90.71 0.92
38 46 50 98.91 94.05 0.49
39 47 51 102.78 97.41 0.18
40 48 52 106.84 101.20 0.00
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Node 24

Hydrophone Number Planned Positions Best Solution
1-40 1-48 1-52 x(m/fmin) x(m/fmin) y(m/fmin)

1 1 1 0.00 0.00 0.00
2 2 2 1.67 1.59 0.09
3 7 7 3.40 3.17 0.11
4 11 15 5.28 492 0.12
5 13 17 7.19 6.73 0.05
6 14 18 9.22 8.65 0.03
7 15 19 11.36 10.71 -0.03
8 16 20 13.60 12.89 -0.10
9 17 21 15.96 15.22 -0.12
10 18 22 18.44 17.70 -0.11
11 19 23 21.04 20.12 -0.16
12 20 24 23.77 22.84 -0.17
13 21 25 26.65 25.61 -0.12
14 22 26 29.67 28.58 -0.15
15 23 27 32.84 31.69 -0.17
16 24 28 36.17 35.01 -0.20
17 25 29 39.67 38.48 -0.18
18 26 30 43.35 42.11 -0.20
19 27 31 47.22 46.05 -0.18
20 28 32 51.29 49.90 -0.18
21 29 33 55.56 54.13 -0.15
22 30 34 57.22 55.78 -0.12
23 31 35 58.97 57.52 -0.10
24 32 36 60.81 59.32 -0.12
25 33 37 62.75 61.24 -0.14
26 34 38 64.78 63.05 -0.15
27 35 39 66.91 65.14 -0.16
28 36 40 69.16 67.35 -0.18
29 37 41 71.52 69.68 -0.18
30 38 42 73.99 72.13 -0.20
31 39 43 76.59 74.67 -0.18
32 40 44 79.33 77.26 -0.12
33 41 45 82.20 80.11 -0.08
34 42 46 85.22 83.13 -0.04
35 43 47 88.39 86.29 0.02
36 44 48 91.73 89.61 0.06
37 45 49 95.23 93.07 0.08
38 46 50 98.91 96.70 0.09
39 47 51 102.78 100.53 0.08
40 48 52 106.84 104.56 0.00
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Node 31

Hydrophone Number Planned Positions Best Solution
1-40 1-48 1-52 x(m/fmin) x(m/fmin) y(m/fmin)
1 1 1 0.00 0.00 0.00
2 2 2 1.67 1.61 -0.04
3 7 7 3.40 3.22 -0.07
4 11 15 5.28 4.97 -0.01
5 13 17 7.19 6.78 0.06
6 14 18 922 8.82 0.12
7 15 19 11.36 10.88 0.18
8 16 20 13.60 13.12 0.20
9 17 21 15.96 15.45 0.26
10 18 22 18.44 17.77 0.27
11 19 23 21.04 --DEAD--
12 20 24 23.77 22.93 0.29
13 21 25 26.65 25.75 0.27
14 22 26 29.67 28.67 0.28
15 23 27 32.84 31.75 0.36
16 24 28 36.17 35.05 0.35
17 25 29 39.67 38.49 0.35
18 26 30 43.35 42.15 0.31
19 27 31 47.22 4597 0.24
20 28 32 51.29 49.96 0.13 .
21 29 33 55.56 54.08 0.10
22 30 34 57.22 55.64 0.06
23 31 35 58.97 57.34 0.03
24 32 36 60.81 59.11 0.01
25 33 37 62.75 60.99 -0.02
26 34 38 64.78 62.89 -0.08
27 35 39 66.91 64.90 -0.12
28 36 40 69.16 66.99 -0.12
29 37 41 71.52 69.32 -0.13
30 38 42 73.99 71.67 -0.14
31 39 43 76.59 74.16 -0.18
32 40 44 79.33 76.76 -0.29
33 41 45 82.20 79.60 -0.32
34 42 46 85.22 82.58 -0.32
35 43 47 88.39 85.67 -0.34
36 44 48 91.73 88.87 -0.24
37 45 49 95.23 92.43 -0.26
38 46 50 98.91 96.06 -0.20
39 47 51 102.78 99.87 -0.08
40 48 52 106.84 103.92 0.00
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Node 32

Hydrophone Number Planned Positions Best Solution
1-40 1-48 1-52 x(m/fmin) x(m/fmin) y(m/fmin)

1 1 1 0.00 0.00 0.00
2 2 2 1.67 1.67 0.04
3 7 7 3.40 3.29 -0.03
4 11 15 5.28 5.15 -0.07
5 13 17 7.19 7.02 0.11
6 14 18 9.22 9.07 0.09
7 15 19 11.36 10.94 0.13
8 16 20 13.60 13.39 0.11
9 17 21 15.96 --DEAD--

10 18 22 18.44 18.22 0.15
11 19 23 21.04 20.69 0.20
12 20 24 23.77 23.34 0.26
13 21 25 26.65 26.31 0.33
14 22 26 29.67 29.27 0.38
15 23 27 32.84 32.46 0.37
16 24 28 36.17 35.80 0.35
17 25 29 39.67 39.08 0.43
18 26 30 43.35 43.09 0.29
19 27 31 47.22 46.95 0.25
20 28 32 51.29 51.06 0.21
21 29 33 55.56 55.37 0.24
22 30 34 57.22 57.07 0.23
23 31 35 58.97 58.90 0.20
24 32 36 60.81 60.72 0.26
25 33 37 62.75 62.75 0.19
26 34 38 64.78 64.64 0.22
27 35 39 66.91 66.82 0.19
28 36 40 69.16 69.01 0.22
29 37 41 71.52 71.47 0.18
30 38 42 73.99 73.88 0.18
31 39 43 76.59 76.50 0.16
32 40 44 79.33 79.35 0.11
33 41 45 82.20 82.05 0.12
34 42 46 85.22 84.94 0.19
35 43 47 88.39 88.06 0.23
36 44 48 91.73 91.79 0.20
37 45 49 95.23 95.04 0.14
38 46 50 98.91 98.90 0.10
39 47 51 102.78 102.65 0.08
40 48 52 106.84 106.80 0.00
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Node 41

Hydrophone Number Planned Positions Best Solution

1-40 1-48 1-52 x(m/fmin) x(m/fmin) y(m/fmin)
1 1 1 0.00 0.00 0.00
2 2 2 1.67 1.95 -0.26
3 7 7 3.40 3.25 0.00
4 11 15 5.28 5.17 -0.09
5 13 17 7.19 6.88 0.09
6 14 18 9.22 8.87 0.19
7 15 19 11.36 11.03 0.16
8 16 20 13.60 13.28 0.24
9 17 21 15.96 15.67 0.30
10 18 22 18.44 17.85 0.41
11 19 23 21.04 20.42 0.35
12 20 24 23.77 23.28 0.31
13 21 25 26.65 26.17 0.34
14 22 26 29.67 28.91 0.52
15 23 217 32.84 32.21 0.41
16 24 28 36.17 35.66 0.39
17 25 29 39.67 39.16 0.46
18 26 30 43.35 42.99 0.28
19 27 31 47.22 46.91 0.30
20 28 32 51.29 50.99 0.27
21 29 33 55.56 55.15 0.36
22 30 34 57.22 57.01 0.17
23 31 35 58.97 58.81 0.11
24 32 36 60.81 60.72 0.08
25 33 37 62.75 62.79 -0.01
26 34 38 64.78 64.45 0.27
27 35 39 66.91 66.59 0.23
28 36 40 69.16 68.93 0.24
29 37 41 71.52 71.20 0.31
30 38 42 73.99 73.71 0.18
31 39 43 76.59 76.35 0.17
32 40 44 79.33 78.80 0.24
33 41 45 82.20 81.67 0.15
34 42 46 85.22 84.65 0.09
35 43 47 88.39 87.76 0.15
36 44 48 91.73 91.39 0.13
37 45 49 95.23 95.00 0.08
38 46 50 98.91 98.67 0.05
39 47 51 102.78 102.71 -0.11
40 48 52 106.84 106.80
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Node 42

Hydrophone Number Planned Positions Best Solution
1-40 1-48 1-52 x(m/fmin) x(m/fmin) y(m/fmin)
1 1 1 0.00 0.00 0.00
2 2 2 1.67 1.73 0.12
3 7 7 3.40 3.19 0.07
4 11 15 5.28 5.03 0.10
5 13 17 7.19 6.68 0.05
6 14 18 9.22 8.64 0.06
7 15 19 11.36 10.60 -0.02
8 16 20 13.60 12.79 0.00
9 17 21 15.96 15.25 0.00
10 18 22 18.44 17.70 0.00
11 19 23 21.04 20.17 -0.02
12 20 24 23.77 23.21 0.01
13 21 25 26.65 25.93 -0.07
14 22 26 29.67 29.11 -0.05
15 23 27 32.84 32.28 -0.02
16 24 28 36.17 35.60 -0.06

17 25 29 39.67 --DEAD--
18 26 30 43.35 42.86 -0.17
19 27 31 47.22 46.75 -0.21
20 28 32 51.29 51.00 -0.20
21 29 33 55.56 55.56 -0.19
22 30 34 57.22 --DEAD--
23 31 35 58.97 59.06 -0.12
24 32 36 60.81 --DEAD--
25 33 37 62.75 --DEAD--
26 34 38 64.78 64.79 -0.11
27 35 39 66.91 67.05 -0.12
28 36 40 69.16 69.27 -0.05
29 37 41 71.52 --DEAD--
30 38 42 73.99 --DEAD--
31 39 43 76.59 76.37 -0.04
32 40 44 79.33 --DEAD--
33 41 45 82.20 82.18 -0.06
34 42 46 85.22 --DEAD--
35 43 47 88.39 --DEAD--
36 44 48 91.73 --DEAD--
37 45 49 95.23 95.20 0.00
38 46 50 98.91 --DEAD--
39 47 51 102.78 --DEAD--
40 48 52 106.84 --DEAD--
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Node 43

Hydrophone Number Planned Positions Best Solution
1-40 1-48 1-52 x(m/fmin) x(m/fmin) y(m/fmin)

1 1 1 0.00 0.00 0.00
2 2 2 1.67 1.59 0.12
3 7 7 3.40 3.17 0.37
4 11 15 5.28 4.83 0.42
5 13 17 7.19 6.62 0.29
6 14 18 9.22 8.47 0.29
7 15 19 11.36 10.53 0.35
8 16 20 13.60 12.73 0.38
9 17 21 15.96 14.95 0.43
10 18 22 18.44 17.45 0.45
11 19 23 21.04 20.19 0.49
12 20 24 23.77 22.86 0.47
13 21 25 26.65 25.52 0.47
14 22 26 29.67 28.49 0.50
15 23 217 32.84 31.74 0.54
16 24 28 36.17 35.09 0.57
17 25 29 39.67 38.44 0.64
18 26 30 43.35 42.10 0.63
19 27 31 47.22 45.85 0.68
20 28 32 51.29 49.89 0.71
21 29 33 55.56 54.09 0.79
22 30 34 57.22 55.75 0.82
23 31 35 58.97 57.42 0.82
24 32 36 60.81 59.18 0.81
25 33 37 62.75 61.07 0.87
26 34 38 64.78 63.24 0.85
27 35 39 66.91 65.30 0.89
28 36 40 69.16 67.44 0.87
29 37 41 71.52 69.62 0.87
30 38 42 73.99 71.94 0.90
31 39 43 76.59 74.38 0.87
32 40 44 79.33 77.16 0.77
33 41 45 82.20 --DEAD--

34 42 46 85.22 82.59 0.71
35 43 47 88.39 85.46 0.65
36 44 48 91.73 88.61 0.55
37 45 49 95.23 92.02 0.43
38 46 50 98.91 95.50 0.35
39 47 51 102.78 99.27 0.21
40 48 52 106.84 103.28 0.00
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Node 44

Hydrophone Number

Planned Positions

Best Solution

1-40 1-48 1-52 x(m/fmin) x(m/fmin) y(m/fmin)
1 1 1 0.00 0.00 0.00
2 2 2 1.67 1.64 0.17
3 7 7 3.40 --DEAD--

4 11 15 5.28 --DEAD--

5 13 17 7.19 6.92 0.29
6 14 18 9.22 8.91 0.23
7 15 19 11.36 11.00 0.17
8 16 20 13.60 13.18 0.10
9 17 21 15.96 15.46 0.09
10 18 22 18.44 17.72 0.06
11 19 23 21.04 20.19 -0.02
12 20 24 23.77 22.93 -0.06
13 21 25 26.65 25.73 -0.16
14 22 26 29.67 28.68 -0.17
15 23 27 32.84 31.86 -0.14
16 24 28 36.17 35.16 0.00
17 25 29 39.67 38.63 0.10
18 26 30 43.35 42.36 0.22
19 27 31 47.22 46.14 0.32
20 28 32 51.29 50.11 0.37
21 29 33 55.56 54.25 0.38
22 30 34 57.22 55.82 0.42
23 31 35 58.97 57.55 0.43
24 32 36 60.81 59.40 0.45
25 33 37 62.75 61.35 0.44
26 34 38 64.78 63.27 0.44
27 35 39 66.91 65.33 0.43
28 36 40 69.16 67.49 0.41
29 37 41 71.52 69.79 0.43
30 38 42 73.99 72.24 0.42
31 39 43 76.59 74.67 0.39
32 40 44 79.33 --DEAD--

33 41 45 82.20 80.15 0.27
34 42 46 85.22 83.13 0.20
35 43 47 88.39 86.19 0.15
36 44 48 91.73 89.59 0.10
37 45 49 95.23 93.10 0.14
38 46 50 98.91 96.74 0.12
39 47 51 102.78 100.54 0.09
40 48 52 106.84 104.60 0.00
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APPENDIX B

Displays of Source Tracks upon Convergence
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Figure B.1: Node 11. Omnixomni correlagram for near-field
contact during AEL event, with processed track highlighted.
Hydrophones 1 and 13, day/h/min: 084/20/00 to 084/21/40
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Figure B.2: Node 11. Navigation geometry during AEL event,
and source track upon convergence. AS-00-17
Day/h/min: 084/20/00
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Figure B.3: Node 12. Omnixomni correlagram for near-field contact during

AEL event, with processed track highlighted.
Hydrophones 1 and 13, day/h/min: 085/05/30 to 085/08/00
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(a) Navigation geometry during AEL event, where a green "+" indicates time processed, a black "+"
indicates time not processed, and a red "o" indicates receiver location.
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(b) Source and receiver positions upon convergence, where green indicates source location, red indicates
receiver location, "+" indicates estimated location, and "o" indicates original location.

Figure B.4: Node 12. Geometry during AEL event (top) and source track
upon convergence (bottom). AS-00-19
Day/h/min: 085/05/30
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Figure B.6: Node 21. Geometry during AEL event (top) and source

track upon convergence (bottom).
day/h/min: 090/14/40
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Figure B.7: Node 22. Omnixomni correlagram for near-field contact during AEL
event, with processed track highlighted.
Hydrophones 2 and 13, day/h/min: 107/07/00 to 107/10/00
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Figure B.8: Node 22. Geometry during AEL event (top) and source
track upon convergence (bottom). AS-00-23
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Figure B.9: Node 23. Omnixomni correlagram for near-field contact during AEL

event, with processed track highlighted.

Hydrophones 1 and 13, day/h/min: 130/08/00 to 130/10/10

69

AS-00-24

Copyright@ 1999

The University of Texas at Austin

Applied Research Laboratories
Reproduction and Redistribution Prohibited
Without Prior Express Consent




324 feb gt

3318 Lo bl ;

Latitude - deg

3306 Lol LR

:‘ +
G : : : : :
Baga LoRe T
+4 : : : : : :
+ . :

3302 Lo U U

-118.08 -118.04
Longitude - deg
(a) Navigation geometry during AEL event, where a green "+" indicates time processed, a black "+"

indicates time not processed, and a red "o" indicates receiver location.

3000 |-......... SUUUUUUURIE SRR @ SRR SRR

N s s s ; z
2000....... 2. .. T N < G N e
000 : : t)g? : : 6 :
. . d . . .b: :

1000 ......... Y [P~ I N ........ G’ ........... ._.

ol é"&b ..... ........... g .......... - §

-1000 |- ... SR e e e e e e

2000 oo A T— A g § .......

-6000 -4000 -2000 0 2000 4000 6000
m - east

m - north

(b) Source and receiver positions upon convergence, where green indicates source location, red indicates
receiver location, "+" indicates estimated location, and "o" indicates original location.

Figure B.10: Node 23. Geometry during AEL event (top) and source
track upon convergence (bottom). AS-00-25
Day/h/min: 130/08/00
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Figure B.11: Node 24. Omnixomni correlagram for near-field contact during AEL

event, with processed track highlighted.

Hydrophones 1 and 13, day/h/min: 090/07/00 to 090/10/00
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Figure B.12: Node 24. Geometry during AEL event (top) and source
track upon convergence (bottom).
Day/h/min: 190/07/00
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Node 31. Omnixomni correlagram for near-ﬁeld contact during AEL
event, with processed track highlighted.
Hydrophones 1 and 13, day/h/min: 087/05/30 to 087/08/00
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Figure B.15: Node 32. Omnixomni correlagram for near-field contact during AEL

event, with processed track highlighted.

Hydrophones 1 and 13, day/h/min: 087/07/00 to 087/09/30
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(b) Source and receiver positions upon convergence, where green indicates source location, red indicates
receiver location, "+" indicates estimated location, and "o” indicates original location.

Figure B.16: Node 32. Geometry during AEL event (top) and source
track upon convergence (bottom). AS-00-31
Day/h/min: 087/07/00
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Figure B.17: Node 33. Omnixomni correlagram for near-field contact during AEL
event, with processed track highlighted.
Hydrophones 1 and 13, day/h/min: 087/09/00 to 087/11/30
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(b) Source and receiver positions upon convergence, where green indicates source location, red indicates
receiver location, "+" indicates estimated location, and "o" indicates original location.

Figure B.18: Node 33. Geometry during AEL event (top) and source
track upon convergence (bottom),
Day/h/min: 087/09/00
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Figure B.19:

Node 34. Omni correlagram during AEL event, with

processed track highlighted. Only one pass is illustrated, but three
passes were processed to provide the information for Fig. B.20.
Hydrophones 1 and 13, day/h/min: 094/19/30 to 094/20/10
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(b) Source and receiver positions upon convergence, where green indicates source location, red indicates

"o n

receiver location, "+" indicates estimated location, and "o" indicates original location.

Figure B.20: Node 34. Geometry during AEL event (top) and source
track upon convergence (bottom). AS-00-35
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Fi'gure B.21: Node 41. Omnixomni correlagram for near-field contact during AEL

event, with processed track highlighted.
Hydrophones 1 and 13, day/h/min: 130/10/00 to 130/11/10
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(a) Navigation geometry during AEL event, where a green "+" indicates time processed, a black "+"
indicates time not processed, and a red "o" indicates receiver location.
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(b) Source and receiver positions upon convergence, where green indicates source location, red indicates

receiver location, "+" indicates estimated location, and "o" indicates original location.

Figure B.22: Node 41. Geometry during AEL event (top) and source
track upon convergence (bottom). AS-00-37
Day/h/min: 130/10/00
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Figure B.23: Node 42. Omnixomni correlagram for near-field contact during AEL

event, with processed track highlighted.
Hydrophones 1 and 13, day/h/min: 130/13/00 to 130/14/50
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Node 42. Navigation geometry during AEL event, where a green ''+"
indicates time processed, a black "+" indicates time not processed,
and ared ''o" indicates receiver location.

Day/h/min: 130/13/00
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Figure B.25: Node 43. Omnixomni correlagram for near-field contact during AEL
event, with processed track highlighted.
Hydrophones 1 and 13, day/h/min: 101/20/40 to 101/23/30
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(a) Navigation geometry during AEL event, where a green "+" indicates time processed, a black "+"
indicates time not processed, and a red "o" indicates receiver location.
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(b) Source and receiver positions upon convergence, where green indicates source location, red indicates
receiver location, "+" indicates estimated location, and "o" indicates original location.

Figure B.26: Node 43. Geometry during AEL event (top) and source
track upon convergence (bottom). AS-00-41
Day/h/min: 101/20/40
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(a) Navigation geometry during AEL event, where a green "+" indicates time processed, a black "+"
indicates time not processed, and a red "o" indicates receiver location.
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(b) Source and receiver positions upon convergence, where green indicates source location, red indicates
receiver location, "+" indicates estimated location, and "o" indicates original location.

Figure B.28: Node 44. Geometry during AEL event (top) and source
track upon convergence (bottom). _ AS-00-43
Day/h/min: 084/15/40
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